Alternative Software Architecture
Development Approaches for
Lunar Surface Systems

Presented to the US Chamber of Commerce Programmatic
Workshop on NASA Lunar Surface Systems

Roscoe Ferguson
Graham O’Neil
26 February 2009






Lunar Surface Systems Concept Study Topic 5

® Objective is to provide NASA with
identified alternate software
development approaches and
architecture for the LSS to increase
software reliability and performance,
while decreasing the development and
maintenance costs of that software.

® Define Figures of Merit (FOM)
specifying significant contributors to
development and maintenance costs.

® Evaluate approaches in regards to
effectiveness against significant cost
drivers.

® Provide example of architecture as
applied to LSS.

3/3/2009

Page 3 USA

United Space Alliance



Topics

® Lunar Mission from a Software Viewpoint
® Cost Drivers and Figures of Merit

® Development Approaches

® Software Architecture and Design

® Comparison and Results

3/3/2009 Page 4 USA

United Space Alliance




Lunar Surface System Elements

. - .
_The LS_S will COI‘]SIS.'[ of a fleet of SyStemS Lunar Qutpost Surface Systems Concepts @
including crew habitats, rovers, power (Hard-shell habitation)
systems, oxygen production plants, and o8 Supmort b (50 oo
I ab O r at O ry Sys t e m S . (Sl.rﬁport; &:'xapr-stomga. r:argo 10 KW Arrays [net) CDI‘\D l

. . offloading & lander ) / \ ‘.‘. .
® Crew habitats will support a crew of 4 for B |
180 days on the lunar surface. & d

® Rovers will be operated autonomously or Ao o

. . roduction Pantry il o -
by the crew. There will be pressurized " TV e e i
roving systems that can travel for AR BB e K o o
hundreds of kilometers. TR N S Ml
® Power systems will produce at least 35 sy, ) NG &7 e '3"

kW of net power production and storage g q - é”w’v“@”fa?‘éé‘:'““‘: 3
for eclipse periods.

® Oxygen production plants will produce
oxygen at a rate of 1 mT per year.

® Laboratory systems will provide
laboratories and instruments to meet
exploration and science objectives.

3/3/2009 Page 5 USA

United Space Alliance



LSS Software Challenges

® Distributed Cooperation

® Distributed Failure Management

® C3I Compliance

® Varying Levels of Fault Tolerance

® Remote Operation

® Autonomous Operations

® Transitions from Dormancy to Reconstitution

® Integration of New Software on Non-Interference Basis

® Accommodation and Integration of International Partner Software Systems

® All complicated by operations in the Lunar environment.

3/3/2009

Page 6 USA

United Space Alliance



Software Architecture and Development Models

® A software development process is a methodology used to control the
development of a software product.

® The Object Management Group (OMG) defines software architecture as the
specification of the parts and connectors of the system and the rules for the
interaction of the parts using the connectors.

Software development processes and software architectures can have a
profound effect on software development and maintenance cost.

Development Model

software

3/3/2009 Page 7 USA

United Space Alliance



Software Architecture and Development Models

Requirements Architecture
Create specification for L1 LA} -
bBehavier of product.
Layer 2
= Layer 1
Des=ign
—_— %
o [\ Revewsinapecton
+ Frocesses to add quality
throughout lifecycle.
Construction of
blueprint.
Ems * Development Model/Approach must
Unit Tests support Environment
Testing of Requirements are key
Ippismmnation: — drives product development
| — used to verify product
) ‘e ) Verification Implementation, Verification,
Sim pl ified Software LlfeCyCIe Reviews/Inspections depend on
I;::::::;:f"“ e understanding of Design and
Architecture

3/3/2009 Page 8 USA

United Space Alliance



Cost Drivers and Figures of Merit

USA

United Space Alliance



ldentified Cost Drivers/Figures of Merit (FOM)

® Cost = labor*time
® Cost drivers associated with:

— Software Development Approaches ,
>f?r Sample Campaign Analysis

— Software Architecture

® Cost drivers attributed to time,
labor or both

Surface

&
s ©
[noe]
] u j
@i @
=i

i
i

[
(=]
=]
-]

Requirements

) @l A ;
1, B 1171442 total
o | ||surface days
i |

Cumulative Days o

g Verification

| [
i || Unpressurized, Liquid, & Gas carriers not shown
i | |__Each Crewed Lander & Flight 1 has 500 kg of Science

R s S o™ T R T Pl

Development

Page 8

Maintenance

3/3/2009 Page 10 USA

United Space Alliance



Cost Drivers - Software Development Approaches

Human Resource Management

Efficiency in reducing idle time of human resources
during software lifecycle. Increased productivity can
reduce development time. (time)

Lifecycle Steps

End of Lifecycle Defect Rate

Rate of major errors found late in the lifecycle.
Errors typically found late in the lifecycle increase
cost. (time, labor)

Requirements

Create specification for
behavior of product.

Design

From specification to
blueprint of product.

Requirements Scope Production

Effectiveness of development approach to support “buy by
the yard". Provides ability to produce reduced scope
systems to be augmented in the future. Reduces total loss
of investment. (time, labor)

Implementation

Construction of
blueprint.

Requirements to Product Alignment

Efficiancy to pravent divergence between requiremeants and
implementation during the lifecycle. Divergence results in
rework. (time, labor)

Unit Tests

Testing of
implementation.

. All Lifecycle Steps

Verification

Test that product meets
specification.

/- Efficiency to converge requirements. (time)

Requirements Convergence

Requirements Testability

Degree of testability of requirements to
support verification. Vague or ambiguous
requirements result in rework (time, labor)

Change Efficiency

Efficiency to make changes during the
software lifecycle. (time, labor)

Software Lifecycle Artifact Automation

Level of automation in the production of lifecycle artifacts.
Reduces the traditional manual effort required to support lifecycle
artifacts. (time, labor)

Software Lifecycle Tool Support

Level analysis aids, development process automation,
and integration. Automation ¢an reduce manual efforts.

(time, labor)

——

3/3/2009

Page 11

United Space Alliance



Cost Drivers - Software Architecture/Design

Design Abstraction

Level that represents the rendering of concepts
to realize a design. Increases the understanding
of a system. (time, labor)

Lifecycle Steps

Design Pattern Consistency

Level consistency when implementing similar
design concepts. Consistent design patterns
increases the understanding of a system (time,

Requirements

Create specification for
behavior of product.

labor)

Encapsulation

Packaging of behavior into ¢containers. It
provides conceptual and physical independence.
Enhances the ability to adapt and understand
changing the system. (time, labor)

Scalability

Property of system to gracefully handle growing
amounts of scope. Enhances the changeability of|
a system. (time, labor)

Design

From specification to
blueprint of product.

Implementation

Construction of
blueprint.

Unit Tests

Testing of
implementation.

The amount of reuse in software product. Reuse
reduces reimplementation of common concepts
and increases reliability be the reuse of proven
software components in a system (time, labor)

Verification

Test that product meets
specification.

N All except Requirements

N All except Reviews/Inspections

Reviews/Inspections

Processes to add quality
throughout lifecyele.

-t

\

Modularity

The degree of the separation of concerns by
enforcing logical boundaries between
components using well defined interfaces.
Enhances understanding and changeability of a
system (time, labor)

Technology Independence

The ability to evolve domain logic to newer
technologies. Software is usually written for a
specific application that makes a large
investment in domain legic. (time, labor)

Software Partitioning

Property to physically isolate software areas or
groups. Improves reliability and changeability of
system. Creates isolated verification regions of
software. (time, labor)

Fault Tolerance Level

Property that indicates how many faults a
system can encounter and continue proper
operation after failure. Cost typically increases
the more faults a system is tolerant to before
failure. (time, labor)

Fault Tolerance Approach

The approach to implement fault tolerance.
Complex in nature and ¢an increase complexity
of system. Can be implemented in software or

3/3/2009

Page 12

hardware. (time, labor)

United Space Alliance



Development Approaches

USA

United Space Alliance




ldentified Development Approaches

® There are various models or approaches for
software development, but all can be broken
down into the steps of Requirements,
Design, Implementation, Verification, and
Maintenance.

Each model provides a philosophy to realize -~

each step and the relationships between
them. Development Model

® I|dentified approaches are:
— Academic Waterfall Models
— Spiral Model

software

— lterative Model
— Agile Methods

3/3/2009 Page 14 USA

United Space Alliance



ldentified Development Approaches

Academic Waterfalls

Well defined processes
Up-front requirements and

Requirements

—

planning

Steps performed serially (except
modified approach)

Exponential cost curve over time

Design

Implementation

Relies on artifacts l
(documentation)

Little or no feedback from
experience

Verification

Requirements partitioned into
prioritized functionality

groups (subsystems) with
clean interfaces.

Each iteration consists of all
Waterfall steps.

Each iteration only addresses
one set of partitioned

functionality.

Each iteration can be a full
production system.

Feedback from iterations

Agile Methods

Like Waterfall, except each
step is ended with a
prototyping effort and risk
assessment.

Prototype lets users
determine if project is on
track, should be sent back to
prior steps, or should be
ended.

Includes Risk Planning as —

Fvauate Prototype and
part of process. _ RiskAsse y

“QB audible at the line”

Minimal up-front planning with broad
up-front requirements.

Adaptive to change based on
environment.

Short time frame iterations of full
development cycles (requirements —
testing) resulting in working software.
Features frequent communications
over documentation via team
collaboration with eustomer
invelvement.

Working software is primary measure
of progress vs. artifacts.

Relies on techniques for quality and
productivity (continuous integration,
test automation, pair programming,
test driven development).

3/3/2009

Page 15

USA

United Space Alliance



LSS and Development Approaches

All have useful features. Each taken into consideration
poses the questions:

Complete specification (requirements)
vs. modularized evolved specification?
How much feedback from experience
(trial and error)?

Inspection vs. applied techniques for
quality improvement?

How much and what levels of
collaboration?

Answers depend on the
software criticality, complexity
and the environment.

® LSS has the potential to be
developed and maintained in
a dynamic and constrained
environment.

® Will have multiple elements
of varying criticality and
complexity.

® Possible approach:

— extract “best practices”

— apply them as needed in
combinations for LSS element
based on criticality and
complexity.

3/3/2009 Page 16

USA

United Space Alliance



Development Approach Best Practices and Cost Drivers

® Modularized Requirements with Priority 1l
— Allows scope to be broken up as required in modules

— Modules can be parts, subsystem, or entire system (for .
simple systems) Addressed Development Process Cost Drivers

— Can occur in parallel or phased

Provide feedback to requirements module via working | Requirements Convergence

software

Requirements Testability
— Trial and error to reduce risk

Build verification test side by side with requirements (test Human Resource Management

driven approach
PP )_ H Change Efficiency
— Ensures requirements are testable

Build unit tests before development (test driven approach) [
— Provides quality first mentality for development Requirements Scope Production

Use Pair Implementation where two developers work together
at one machine. A driver enters the implementation and
another critiques it. Roles are periodically switched. [

End of Lifecycle Defect Rate

— Claimed to increase productivity

— High quality code (15% fewer defects) in about half the time
(58%). Williams, L., Kessler, R., Cunningham, W., & Jeffries,
R. Strengthening the case for pair programming. IEEE
Software, 17(3), July/August 2000

3/3/2009 Page 17 USA

United Space Alliance




Development Approach Best Practices and Cost Drivers

® Tight iteration durations and continuous testing HE B
— Forces productivity
— Early and frequent error detection Addressed Development Process Cost Drivers
— Increases feedback rate

Requirements Convergence

— Minimizes specification to product divergence
® Use working software as progress | | Requirements Testability
— Provides actual measure of progress Human Resource Management

® Frequent collaboration with customers or Change Efficiency
stakeholders

— Minimizes project divergence from expectation
— Customer or stakeholder really aware of program Requirements Scope Production
state. End of Lifecycle Defect Rate

® Use Inspections/Reviews &
— Dependable approach for quality

— Can be more efficient with use of analysis tools
and well established software and design

practices
Page 18 USA

United Space Alliance

3/3/2009



Software Architecture and Design

USA

United Space Alliance



Identified Alternate Software Architectures/Design

® Software Architecture and design
decisions have a direct effect on
development model lifecycle costs. Development Model

® The architecture and design
decisions should utilize modern
and proven key modern software
methods and techniques.

® Should also look for an
architecture approach that is
designed to support development
lifecycle concerns.

software

3/3/2009 Page 20 USA

United Space Alliance



Apollo Program to Space Transportation System

® Assembly language style programming was the J
status quo.

® Belief that high order languages with assembler
(code generation) was not usable.

® Competition was performed to determine feasibility
of modern software practice (high level
programming).

The competition showed that the approximate 10 percent loss in
efficiency resulting from the use of the high-order language was
insignificant when compared to the advantages of increased
programmer productivity, program maintainability, and visibility into
the software.

Use of high-level languages coupled with improved development
techniques and tools, productivity was doubled over the comparable
Apollo development processes.

Higher levels of abstraction and code generation improved the software development and productivi
1970’s and should be effective for the transition to the

3/3/2009

Page 21 USA

United Space Alliance



ldentified Design Decisions

® Abstraction and Constrained Code Generation
— Increase system understanding
— Provide consistent design patterns

— Build software like hardware, concepts implemented
as combinations of common design patterns and
principles

® Reuse

—  Build common functions and components once for all
LSS elements to decrease cost and increase reliability.

® Component Based
— Modularize internal system to services with interfaces ——
® Interface Definitions om ents LSS Software Architecture

— For interoperable system to system interaction
definitions

®  Decoupling

— Publish/Subscribe data distribution can improve data
accessibility both internally and test facility support.

In terfa@m lions

3/3/2009

Page 22 USA

United Space Alliance



ldentified Architecture

® Model Driven Architecture (MDA)

— Model Driven to direct the course of
understanding, design, construction,
deployment, operation, maintenance, and
modification. Applications Technology
/‘,’——‘x\

MDA Process

— Platform based (layering)

® Requirements in Computation Independent
Models (CIMs)
® Application or domain logic in Platform
Independent Models (PIMs)
® Implementation and services in Platform
Specific Models (PSMs)
® Tools provide
— Traceability between CIM, PIM, and PSM.
— Model compilers and supporting artifacts.
® Promotes
— Portability
— Interoperability Implementation
— Reusability through architecture separation of
concerns

3/3/2009 Page 23 USA

United Space Alliance



Identified Software Architectures/Design and Cost Drivers

® Design Approaches
— Abstraction and Constrained Code Generation I ™

— Reuse

— Component Based

— Interface Definitions &

— Decoupling &=
® Architecture

— Model Driven Architecture (MDA) H ™

Software Partitioning

Property to physically isolate software areas or
groups. Improves reliability and changeability of
system. Creates isolated verification regions of
software. (time, labor)

Property that indicates how many faults a
system can encounter and continue proper
operation after failure. Cost typically increases
the more faults a system is tolerant to before
failure. (time. labor)

Fault Tolerance Level

Fault Tolerance Approach

The approach to implement fault tolerance.
Complex in nature and can increase complexity
of system. Can be implemented in software or
hardware. (time, labor)

—r>

Can be provided in technology such as
ARINC 653 RTOS

Independent of MDA and depends on
approach

Addressed Architecture/Design Cost Drivers

Design Abstraction
Design Pattern Consistency
Encapsulation

Scalability

Technology Independence

Reuse Factor

3/3/2009

Page 24

USA

United Space Alliance



Example of LSS using MDA

® Common platform services
provided by central authority as
form of middleware (PSMs)

® Reuse established in PSMs:

— system software

— distributed coordination
— fault tolerance support
— facility support

— Ca3l

® Domain logic implemented in
models encapsulated via
components and interfaces
(PIMs)

® Tools can support PIM and PSM

— Model Compilers for PIM SPSM can
be hand coded if required

— Generate PSM based on LSS
element needs

Applications

Models

components-__|

components ——

Platform Repository

Control Framewark 1
Control Framework 2
L3l Services
Systems Software
1FT Services
2FT Services
Parameter DB

Distributed Coord.

|

@ LSS Platform Autherity

Control Fi k1 S

C3l Services 1FT Services

Parameter DB Distributed Coord.

Platform 2

C3l Services

Parameter DB

Platform 3

Control F rk2  Sysh

C3l Services 1FT Services

Parameter DB Distributed Coord.

3/3/2009 Page 25

USA

United Space Alliance



Example of MDA Support of Technology Independence

® Domain logic implemented as Matlab models in
PIM is independent of technology.

® Can be generated to support alternate technology
such as “Reconfigurable Computing” using SRAM
Field Programmable Gate Arrays.

® Performance Gains

— control applications implemented directly in hardware
execute in parallel

CPU Based FPGA Based

® Increased Reliability Model Model

— Algorithms implemented using common and strict
hardware design patterns

High Level Language HDL

RTOS Binary Configuration

— Removes complex software analysis tasks

Assembly FPGA

Machine Code

CPU

Reduce logical layers

3/3/2009 Page 26 USA

United Space Alliance



Comparison and Results

USA

United Space Alliance




Program Evaluations of Improvement Contributions

Contributors\Program Shuttle ISS CEV QRMS Nuclear Power
Model Driven Architecture X X

Model Reuse X X X X

C3l X X X

Decoupling X X X
Simple Interface X X X

3/3/2009 Page 28 USA

United Space Alliance



Typical High Maturity Development Process

o o o o o o o (e
(ei>) (ei>) o o o o (en) (em) o
c % & 8 € B8 8 ® 8 8 ¢ 3 § &g § 8 g &g
100 100

. . . Performance Test|Revie
This figure represents the life cycle of a single Space ' S

90 Shuttle flight software requirements addition, deletion or Performance Test 90
change.
_ _ ) Verification Test Review In practice, process steps can
80 Numerous requirements changes are |mp_Iem_ented in overlap to some degree, and 80
parallel_. The resulting new software version is called an several process steps can be
. Operational Increment, or Ol. Verification Test iterative. .

: : : Some process steps such as
Build and Configuration Management

Flight Software Development Process Cost, Percent

60 Configuration Management are 60
0 Unit| Test Inspection pervasive throughout the entire
100 Y0 COSt process.
50 50
168 Days
Unit Test Process steps are shown as
40 individually contiguous and sequential, 40
to provide an accurate representation
- Code|Inspection of total percent cost and total duration. -
Coding
20 Design Inspection Box heiah h 20
Design Documentation ox height represents the percent cost
: . of the process step.
Requirgments Inspection
10 10
Scenario Review Box width represents duration
. Requirements Analysis of the process step, in days. .
() o () o () (ap) (ap) (o]
o £ & & S B 3 R a ] S = S o s I o ]

Development Process Duration, Days

3/3/2009 Page 29 USA

United Space Alliance



LSS Reuse Example: Basic Parameters

Platform Source Total Size Re-used New
Habitation System | JSC Habitat Testbed 250 0 250
Oxygen Generation | US Navy 80 70 10
Power System Commercial 100 80 20
Exploration Science | Estimate 120 90 30
Rovers INEL 150 140 10

3/3/2009 Page 30 USA

United Space Alliance



Assume The Following Characteristics...

® Latent Defect Rate is .1 defect per KSLOC. This would be very good.
® Defect Insertion Rate is 2%. This is very good.
® Probability a defect leads to a Crit 1 failure; Loss of Crew or Vehicle is 2%

® Latent Defect Removal Rate is 15% per year. This is very good.

3/3/2009

Page 31 USA

United Space Alliance



Reuse Provides Additional Safety Margin

12
% 10 - /
=3
[}
x
5
(o]
S
2 3 s
9]
(@]
.|
(o)
|—
£
i 6
©
]
=)
[}
x
=
§ 4
$)
(@]
-
(o)
'_
[0}
E 24
|_

0 : : : : . :

1 3 5 7 9 11 13 15

Number of Lunar Surface Systems

3/3/2009 Page 32 USA

United Space Alliance



Reuse Provides 50% Cost Reduction

120%

100%

80%

60%

40%

20%

Development Cost With Reuse / Development Cost Without Reuse

0%

1 3 5 7 9 11 13 15

Number of Lunar Surface Systems

3/3/2009 Page 33 USA

United Space Alliance



Model Driven Architecture Results

Productivity

SCADE Max
(13.5)

Average productivity of SCADE across 4 test cases is an

order of magnitude greater than current software development.

Effort

EP Hours Comparison of SCADE vs. HAL/S

| L i
99—
8] 50 100 150 200 250 300 350
EP Hours

—p—SCADE —@—HAL/S

Starting from scratch, SCADE produced zero defect modules
with less development and verification effort than standard
approaches.

Schedule

Performance Against 75% Reduction Goal

—a— SCADE Actual

= Calendar Time
[days]
—=— Schedule Lead/La

AN -

\./// Schedule reduced
/ by 75% [w ork
/ days]

1 1 2 Il

Test Case

All four test cases were completed within the reduced schedule goal.

Learning Curve

—e—Productsity |

AOCHour
=1

Project

3/3/2009

Page 34

USA

United Space Alliance



Optimized High Maturity Software Development Process

c 8 & 8 & 8 8 R 8 5 g & § & § 8§ § 8§
100 100
= This figure represents the projected process improvement
(o) . . : ;
O 90 resulting from adoption of formal requirements notation, a 90
() certified auto coder tool, an executable requirements modelling The original process steps are
D_“ 20 tool, an automated verification test generation tool, and a shown in gray for reference 20
1] verification test coverage checking tool. _ _ )
@] Remaing process steps shift to fill the
O . . gap left by the modified processes
»n 70 Design Documentation L S 70
n Desidn.Inspéction resulting in overall process savings of
8 gn-insp : 61 percent cost and 81 days duration.
O &0 Code-ihspection 60
o Unit Test Inspection Verification Test activities are projected to be reduced
e 39% COSt by half, based on efficiencies introduced by the
GE) 50 automated Test Generator and Coverage Checker. 50
= 87 Days o
o Unit test is projected to be reduced to 1 percent cost and
?>) 39 I : 1 day duration, because correct logical function is 39
o Verification Test Review Performance Test Review established during the requirements modeling activity.
O Build and
o 30 Configuration [ Performance Test ] Projected use of a new certifieq auto coder tool is allocated 30
g Management D 1 percent cost and 1 day duration.
“E—; 20 Unit Test Verification T Design documentation and design inspection are eliminated because 20
n . [ } ghification rest formal requirements contain enough detail to be used as design, and
— Auto Coding : . o
< ) i are self-documenting. This assumes amendment of traditional 0
2 ~Requirements Inspection customer process requirements.
LL Scenario Review
5 ts Analysis Requirements Inspection is projected to be reduced by half because the Executable )
Requirements Modeler tool is a much more efficient way to examine requirements.
c % R’ 8 & 8 8 R 8 & g 2 & & § &8 § g
Development Process Duration, Days
3/3/2009 Page 35 USA

United Space Alliance



Additional Application Areas for LSS Software Solutions

® Systems with similar characteristics for high reliability, automation of complex
actions, driven by data that is dynamic in a dynamic environment.

— Human Medical Systems [both in-vivo and in silico]
— Urban Traffic Management

— Rail Road Control Systems

— Chemical Plants

3/3/2009 Page 36 USA

United Space Alliance



Further Studies

® Reuse case studies to determine barriers and mitigations for improved reuse.
® Integration of Systems and Software in the Operational stage.

® Assessment of Competency in systems as part of IVHMS.

® Interfaces for Integration with International Partners

® Study of approaches for constrained code generation.

® Study of the use of tools to cut cost in the development lifecycle including
analysis aids and lifecycle support.

® Requirements and Design tool support for system dormancy and reconstitution
functions.

3/3/2009 Page 37 USA

United Space Alliance



Conclusion

Ratio Of LOC Risk: Non-Reuse Compared to

Time Ta LOC With Rewse / Time Ta LOC With out Reuse

o

@

Reuse Development Methods

/\\/;

Optimized High Maturity Software Development Process

Development Process Duration, Days

Ratio Development Cost of Reuse

Compared To No Reuse

Reliability, quality and safety goals can be
met at reduced cost and effort of current
human space flight systems.

Most important contributors to cost
reduction for high reliability systems are
already being partially used.

Developing organization must focus on
standardization, inspection, test, and select
the appropriate development approach for
the system.

3/3/2009

Page 38

USA

United Space Alliance



	Lunar Surface Systems Concept Study Topic 5
	Topics
	Lunar Surface System Elements
	LSS Software Challenges
	Software Architecture and Development Models
	Software Architecture and Development Models
	Cost Drivers and Figures of Merit
	Identified Cost Drivers/Figures of Merit (FOM)
	Cost Drivers - Software Development Approaches
	Cost Drivers - Software Architecture/Design
	Development Approaches
	Identified Development Approaches
	LSS and Development Approaches�
	Development Approach Best Practices and Cost Drivers
	Development Approach Best Practices and Cost Drivers
	Software Architecture and Design
	Identified Alternate Software Architectures/Design
	Apollo Program to Space Transportation System 
	Identified Design Decisions
	Identified Architecture
	Identified Software Architectures/Design and Cost Drivers
	Example of LSS using MDA
	Example of MDA Support of Technology Independence
	Comparison and Results
	Program Evaluations of Improvement Contributions
	Typical High Maturity Development Process 
	LSS Reuse Example:  Basic Parameters
	Assume The Following Characteristics…
	Reuse Provides Additional Safety Margin 
	Reuse Provides 50% Cost Reduction 
	Model Driven Architecture Results
	Optimized High Maturity Software Development Process
	Additional Application Areas for LSS  Software Solutions
	Further Studies
	Conclusion

